
MA 3232 - Numerical Analysis
Final Exam - Quarter II - AY 04-05

Instructions: Work all problems. Read the problems carefully. Show appropriate work, as
partial credit will be given. Three pages (8 1

2 by 11) of notes (both sides) and Mathematics
Department “Blue Books” of tables permitted.

1. (30 points) Consider the table of data:

x f(x) ∆f(x) ∆2f(x)

0.00 3.000 1.633 −1.946

0.35 4.633 −0.3130 −0.3670

0.70 4.320 −0.6800 0.1850

1.05 3.640 −0.4950 0.2560

1.40 3.145 −0.2390

1.75 2.906

a. Estimate f(0.83) using the most appropriate second-degree Newton-Gregory for-
ward polynomial.

solution:

The partially complete difference table, up through the third differences,
is:

x f(x) ∆f(x) ∆2f(x) ∆3f(x)

0.00 3.000 1.633 −1.946 1.579
0.35 4.633 −0.3130 −0.3670 0.5520
0.70 4.320 −0.6800 0.1850 0.0710
1.05 3.640 −0.4950 0.2560
1.40 3.145 −0.2390
1.75 2.906

By definition, the second-degree Newton-Gregory forward difference polynomial
has the form:

P2(x) = f0 + s ∆f0 +
s(s − 1)

2
∆2f0

1 - 1

solution:

In this case, since we need a quadratic, we have to use three points. The
most appropriate choice is the closest three, which in this case means:

0.35, 0.70 and 1.05 =⇒ x0 = 0.35

Also, then, for x = 0.83,

s =
x − x0

h
=

0.83 − 0.35
0.30

= 1.371

Therefore, using the line in the difference table that starts at x0 = 0.35, we
have

P2(0.83) = (4.633) + (1.371)(−0.3130) +
(1.371)(1.371− 1)

2
(−0.3670)

= 4.111

(Note for the usually less appropriate choice, x0 = 0.70, we would get:
f(0.83) .= 4.046.)

b. Estimate the error in your answer to part a.

solution:

The normal error estimate in a Newton-Gregory interpolation is the “next
term,” i.e., in this case

s ∗ (s − 1) ∗ (s − 2)
6

∆3f0 =
(1.371) ∗ (1.371 − 1) ∗ (1.371 − 2)

6
(0.5520)

.= −0.0294

which would indicate our answer in part a. should be accurate to two about
significant digits. (Note had we choosen to use x0 = 0.70, our estimate error
would have been 0.0045.)

1 - 2

solution:

Note the actual function we used here was

f(x) = 10xe−2x cos(x) + 3

and the actual value is:
f(0.83) .= 4.065

which implies that the actual error using x0 = 0.83 is

E = −0.046

This value is clearly the same order of magnitude as our estimate. Note that
had we instead used x0 = 0.70 we would have obtained an actual error of

E = 0.019

which is not accurately estimated by the “next term” estimate in that case
of 0.0045.

c. What would have been the advantages and disadvantages of using a cubic spline
here instead of second-degree Newton-Gregory polynomial?

solution:

There would probably have been two advantages to using a cubic spline.
First of all, cubics generally produce more accurate estimates than quadrat-
ics. (That in fact is the case here. MATLAB’s interp1() spline returns a
value of f(0.83) .= 4.062, which is significant more accurate than either Newton-
Gregory value in part a. Secondly, if we needed to graph the function here, a
spline fit would generally produce a more pleasant-appearing graph.

The major drawbacks to using a cubic spline would be that, first, the
equations for fitting a spline are much more difficult (we didn’t even cover
them), and involve solving a system of coupled linear equations, i.e. a matrix.
Secondly, we have not developed any methods to estimate the error of a spline
fit, and consequently would have no way to tell how much confidence we could
have in our answer.

1 - 3

2. (30 points) Consider the function:

f(x) = x3 − 4x + 1 .

a. Show that this function has a simple root in the interval 0 < x < 1 .

solution:

First, observe that

f(0) = 1 and f(1) = −2

The sign change immediately implies that at least one root exists in the interval.
But also, note that

f ′(x) = 3x2 − 4 < 0 for 0 ≤ x ≤ 1

and therefore, f ′(r) 6= 0 at the root. Hence the root is simple.

b. Estimate this root using two iterations of the Secant Method.

solution:

The secant algorithm is:

xn+1 = xn − f(xn)(xn − xn−1)
f(xn) − f(xn−1)

Since the residuals at the left hand end is smaller, and hence likely the root is
closer to that end, we will choose

x0 = 0 =⇒ x−1 = 1

This immediately implies

x1 = x0 −
f(x0)(x0 − x−1)
f(x0) − f(x−1)

= (0) − (1)((0)− (1))
(1) − (−2)

=
1
3

2 - 1

solution:

Noting that f(x1) = f(1/3) = −0.2962, we continue

x2 = x1 −
f(x1)(x1 − x0)
f(x1) − f(x0)

= (0.3333) − (−0.2962)((0.3333)− (0.0000))
(−0.2962) − (1.000)

= 0.2571

(Note that had we chosen x−1 = 0 and x0 = 1, a generally less than optional
choice, we would have obtained:

x1 = .3333 and x2 = .2174)

c. Estimate the error in your answer to part b.

solution:

The error estimate in any iterative method (such as secant) is simply the
difference between the current iterate and the “next term.” In this case, since
f(x2) = f(0.2571) = −0.0114, the next term is:

x3 = x2 −
f(x2)(x2 − x1)
f(x2) − f(x1)

= (0.2571) − (−0.0114)((0.2571)− (0.3333))
(−0.0114) − (−0.2963)

= 0.2540

Therefore, the estimated error in x2 is

e2
.= x3 − x2 = 0.2540 − 0.2571 = −0.0031

(Note the “exact” answer, from MATLAB’s fzero() function, is

r = 0.254101688...

and therefore the actual error is -0.0030, i.e. our estimate is right on.

2 - 2

solution:

Note also, had we started with the gnerally less than optimal choice of
x−1 = 0 and x0 = 1

we would have obtained
x3 = .2547 =⇒ e2

.= .2547 − .2174 = 0.0373 ,

i.e. almost an order of magnitude greater than the error with the more prefer-
able choice.

d. Would Newton’s method have been preferable in this problem? (Briefly explain
your answer!)

solution:

The key here is to first clearly indicate the criteria by which “preferable”
will be judged. The usual ones are efficiency, measured in terms of function
evalauations required, and effectiveness, measured in terms of accuracy of the
iterate. Newton then will be preferable if it produces a more accurate solution
with less work.

Under these criteria, the answer here is almost certainly probably not! In
general, we know secant converges fairly quickly, probably picking up more
than one digit per iteration. (We know that Newton, which is only slightly
faster, usally picks up two digits per iteration.) Moreover, there is nothing in
the behavior of our first couple of iterates to suggest that would not also be
the case here. Therefore, assuming our error estimate accurately represents the
order of magnitude of the errors, we would expect that one more iteration of the
secant method, i.e. computing x4, would produce an answer with an error on
the order of magnitude of 0.0005 or smaller, i.e. four-digit machine precision.
This would be for a total cost of four function evaluations, i.e. about the same
as we would need for only two iterations of Newton. There is very little chance
two iterations of Newton would have produced a significantly better answer than
our x3. (Actually, it does only about as well, so it’s not clearly preferable.)

However, note that with the less optimal choice of starting values (i.e. x0 =
1) and the consequent significantly larger estimate to e2, then the likelihood that
sequent might require at least two more iterations to converge increases, and
Newton becomes potentially more attractive.

2 - 3

3. (40 points) Consider the following table of data:

x f(x)

0.00 0.0000
0.25 0.6065
0.50 0.7358
0.75 0.6694
1.00 0.5413
1.25 0.4104
1.50 0.2987

a. Approximate
∫ 1.5

0

f(x)dx using Simpson’s rule and a step size of h = 0.75

solution:

Note that, in this case, Simpson’s rule with h = 0.75 would utilize only
three data points. Therefore, we must use the local form, i.e.

∫ xi+2

xi

f(x) dx
.=

h

3

[
fi + 4fi+1 + fi+2

]

or, for this set of data

∫ 1.5

0

f(x) dx
.=

0.75
3

[
(0.0000) + 4(0.6694) + (0.2987)

]
= 0.7441

b. Approximate
∫ 1.5

0

f(x)dx using the Trapezoidal rule and a step size of h = 0.25

solution:

The (global) Trapezoidal rule is

∫ b

a

f(x) dx
.=

h

2

[
f0 + 2f1 + 2f2 + · · · + 2fN−1 + fN

]

3 - 1

solution:

or, for this set of data, with h = 0.25,

∫ 1.5

0

f(x) dx
.=

0.25
2

[
(0.0000) + 2(0.6065) + 2(0.7358) + 2(0.6694)

+ 2(0.5413) + 2(0.4104) + (0.2987)
]

= 0.7782

c. Can you use your answer to part a. to estimate the error in your answer to part b?
(Briefly explain your answer.) If not, briefly describe what method you would use. (In the
latter case, do not actually do the calculations!)

solution:

Estimating the error in an integration rule requires either:
(i.) A “next term” estimate, produced by comparing results computed

using two different order methods but the same step size (h), or
(ii.) An extrapolated estimated, produced by comparing results computed

using the same method, but with two different step sizes.
In this example, we have two estimates computed using different methods and
different step sizes. Therefore, neither of the above paradigms apply.

To obtain an error estimate here for the answer in part b, we would first
have to compute either:

(i.) A Simpson’s rule result using h = 0.25, and then apply the “next
term” estimate, or

(ii.) A Trapezoidal rule result using h = 0.50, and then apply Romberg
extrapolation.

3 - 2

d. Would three-point Gaussian quadrature have been an appropriate method for
solving this problem? (Briefly explain your answer!)

solution:

Gaussian quadrature generally produces significantly more accurate an-
swers that Newton-Cotes, but to do so, it must use unevenly space data points,
where the spacing must be chosen to precisely match the order of the estimate.
That is easily done when we know the analytic form of the function. However,
in this case we are not given that information, and have only the evenly-space
table of data above. Therefore, unless we are willing to interpolate these val-
ues at the Gauss quadrature points (a step that will introduce further error),
we cannot even calculate the Gauss quadrature answer for this table of data.
Moreover, even if we could, we have not developed any formulas for estimating
the error using Gaussain quadrature, and so could not answer part b. at all.
Therefore, we Guassian quadrature does not appear to be appropriate for this
data.

3 - 3

4. (30 points) Consider the boundary value problem

y′′ + xy′ + y = x2

y(0) = 3
y(2) = 0

This can solved approximately, using either Finite Difference or Residual-Based Methods.
a. Write (but do not solve), as explicitly as possible, the equations that would

result if this problem were solved by second-order, centered finite differences with a step
size h = 1/2.

solution:

To use finite differences, we must first divide the interval up into a grid,
using, in this case, h = 0.5. This produces

x0 = 0︸ ︷︷ ︸
boundary

, x1 = 0.5 , x2 = 1.0 , x3 = 1.5︸ ︷︷ ︸
interior

and x4 = 2.0︸ ︷︷ ︸
boundary

At each interior point (i.e. at i=1,2,3) we replace all of the derivatives in the
differential equation by corresponding second-order centered differences, i.e.

y′′ + xy′ + y = x2

becomes
yi−1 − 2yi + yi+1

h2
+ xi

−yi−1 + yi+1

2h
+ yi = x2

i

or
(
2 − xih

)
yi−1 +

(
− 4 + 2h2

)
yi +

(
2 + xih

)
yi+1 = 2x2

i h
2 , i = 1, 2, 3

More specifically, at i = 1 (xi = 0.5) we would have

1.75yi+1 − 3.50yi + 2.25yi−1 = .1250

while at i = 2 (xi = 1.0) we would have

1.5yi+1 − 3.50yi + 2.5yi−1 = .5000

and at i = 3 (xi = 1.5) we would have

1.25yi+1 − 3.50yi + 2.75yi−1 = 1.125

4 - 1

solution:

Finally, at the boundaries, we would have

y0 = 3 and y4 = 0

Putting all this together, we have

y0 = 3
1.75y0 − 3.50y1 + 2.25y2 = .1250

1.50y1 − 3.50y2 + 2.50y3 = .5000
1.25y2 − 3.50y3 + 2.75y4 = 1.125

y4 = 0

or, in matrix-vector form




1 0 0 0 0
1.75 −3.50 2.25 0 0
0 1.50 −3.50 2.50 0
0 0 1.25 −3.50 2.75
0 0 0 0 1







y0

y1

y2

y3

y4


 =




3.000
.1250
.5000

1.125
0.000




b. Write, as explicitly as possible, the form of the trial functions that should be
used if this system were going to be solved using the Galerkin Method and fourth-degree
polynomials. (You do not need to find the resulting system of equations, only the trial
functions.)

solution:

The first key point in creating trial (or test) functions is that they must
satisfy the boundary conditions. This is most easily done by properly selecting
the coefficients of the linear terms, i.e. picking c0 and c1 such that

c0 + c1x

satisfies y(0) = 3 and y(2) = 0
This easily leads to

c0 = 3 and c1 = −3
2

4 - 2

solution:

The second key point is that adding subsequent terms must not mess up
these conditions, i.e., in this case, any subsequent terms must be identically
zero at both ends. If we wish to do this with polynomials up to and including
degree four, that makes the arguably simplest form for the trial functions

u(x) = 3 − 3
2

x + c2x(x − 2) + c3x
2(x − 2) + c4x

3(x − 2)

4 - 3

5. (45 points) Consider the initial value problem

y′ = x + y

y(0) = 0.

(Note the exact solution to this is y(x) = ex − x − 1 .)

The second order Improved (or Modified) Euler method, used with a step size (h) of 0.25
and only a single correction per step, yields the following table of data

xi yi fi

0.00 0.0000 0.0000
0.25 0.0312 0.2812
0.50 0.1416 0.6416
0.75 0.3533 1.1033
1.00 0.6949

a. Estimate y(1.0) again, this time using only two steps of the same method.

solution:

The modified Euler algorithm is

yn+1,p = yn + hf(xn, yn)

yn+1,c = yn +
h

2

(
f(xn, yn) + f(xn+1, yn+1,p)

)

For the differential equation, if we need to find y(1) in two steps, we must
use h = 0.5. So, starting with x0 = 0 , y0 = 0, we have for the first step:

f(x0, y0) = x0 + y0 = 0 + 0 = 0

and so
y1,p = y0 + hf(x0, y0) = 0 + (.5)(0) = 0

But now x1 = 0.5, and so f(x1, y1,p) = x1 + y1,p = (.5) + (0) = .5
and therefore

y1,c = y0 +
h

2

(
f(x0, y0) + f(x1, y1,p)

)
= (0) +

(.5)
2

(
(0) + (.5)

)
= 0.125

5 - 1

solution:

Then, for the second step, we have f(x1, y1) = (.5)+(.125) = .625 and
so

y2,p = y1 + hf(x1, y1) = (.125) + (.5)(.625) = .4375

and so, since x2 = 1.0, f(x2, y2,p) = (1.0) + (.4375) = 1.4375
and therefore

y2,c = y1 +
h

2

(
f(x1, y1) + f(x2, y2,p)

)

= (.125) +
(.5)
2

(
(.625) + (1.4375)

)
= 0.6406

i.e.
y(1) .= 0.6406

b. Does the behavior of the error at x = 1. in this example reasonably agree with
theory? (Briefly explain your answer!)

solution:

Consider the following table:

h ytrue yapprox error

.25 0.7183 0.6949 0.0234

.50 0.7183 0.6406 0.0777
=⇒ error(h = .5)

error(h = .25)
=

.0777

.0234
.= 3.32

This method has second order global error, and therefore the errors should be
approximately proportional to h2. If the error were exactly proportional to h2

we would have a ratio exactly equal to four. But this isn’t that far off, so the
result agrees reasonably with theory.

5 - 2

c. Using the above table, estimate the value of y(1.25) using the second-order Adams-
Bashforth-Moulton method:

yn+1,p = yn +
h

2
(3 fn − fn−1)

yn+1,c = yn +
h

2
(fn+1,p + fn)

solution:

First, note that n = 4, and so

f4 = f(x4, y4) = f(1.00, 0.6949) = 1.00 + 0.6949 = 1.6949

Then, using the predictor formula

y5,p = y4 +
h

2
(3f4 − f3) = 0.6949 +

.25
2

(3(1.6949)− (1.1033)) = 1.1926

Now,
f5,p = f(x5, y5,p = f(1.25, 1.1926) = 2.4426

and so

y5,c = y4 +
h

2
(f5,p + f4) = 0.6949 +

.25
2

(2.4426 + 1.6949) = 1.2121

Hence, y5 = 1.2121

5 - 3

6. (25 points) a. Consider the mathematically equivalent statements:

f̃(x) = x −
√

x2 − 1 and f̂(x) =
1

x +
√

x2 − 1

Use four-digit decimal arithmetic with rounding of all intermediate results to evaluate both
of these expressions numerically at

x = 15.0 = .1500 × 102

What is the relative error of each of the two expressions? Computationally, which is the
preferable form for f(x) and why? (Briefly justify your answer.)

solution:

First, note that in four digit arithmetic

x2 − 1 = 15.002 − 1.000 = 225.0 − 1.000 = 224.0

can be computed exactly. However, with rounding of itermediate results,

√
x2 − 1 =

√
224.0 = 14.97

Hence, in our four digit machine: x −
√

x2 − 1 = 15.00 − 14.97 = 0.03000
and: x +

√
x2 − 1 = 15.00 + 14.97 = 29.97

Finally, after rounding, in our four-digit machine

f̃(x) = x −
√

x2 − 1 = 0.03000 and f̂(x) =
1

x +
√

x2 − 1
= 0.03337

Since the exact value is f(x) = 0.03337045..., then the relative errors are,
respectively

f(x) − f̃(x)
f(x)

.=
0.03337045− 0.03000

0.03337045
.= 0.101 .= 200 εmachine

and

f(x) − f̂(x)
f(x)

.=
0.03337045− 0.03337

0.03337045
.= 1.36 × 10−5 .= 0.027 εmachine

Clearly, the second expression is far superior, and the reason should be obvious.
It avoids a subtraction of two nearly equal number, and hence avoids a (near)
catastrophic cancellation.

6 - 1

b. A certain approximation for a definite integral is known to have global errors
that are O(h3). A report concludes that using this method in a problem with a step size
of h = 0.1 should produce an error on the order of magnitude of 0.001 = (0.1)3. What, if
anything, is wrong with this conclusion.

solution:

By definition,

Error = O
(
h3

)
=⇒ Error

.= Ch3

for small h. Therefore, for h = 0.1 (which should be small, assuming we’ve
properly scaled the problem),

Error
.= C(0.1)3 = 0.001 C

However, without any knowledge of the order of magnitude of C, it is impossible
to predict the order of magnitude of

0.001 C

Therefore the conclusion in the report is wrong! (Although note it should be
possible to estimate the order of magnitude of the error correctly by either
recalculating this integral with a different step size and using extrapolation, or
by comparing the answer from this method to that from a higher order method,
e.g. Simpson’s rule.)

6 - 2

